Tìm hiểu về công nghệ in 3d

Công nghệ in 3d là gì

In 3D (tiếng Anh: Three Dimensional Printing) hay còn gọi là Công nghệ sản xuất đắp dần, là một chuỗi kết hợp các công đoạn khác nhau để tạo ra một vật thể ba chiều. Trong In 3D, các lớp vật liệu được đắp chồng lên nhau và được định dạng dưới sự kiểm soát của máy tính để tạo ra vật thể.

Tìm hiểu về công nghệ in 3d

Các thuật ngữ và phương pháp

Mô hình CAD sử dụng cho việc in ấn 3D

Thiết bị và vật liệu AM Trước đó đã được phát triển trong những năm 1980.[3] Năm 1981, Hideo Kodama của Viện Nghiên cứu Công nghiệp thành phố Nagoya phát minh 2:00 chế tạo các phương pháp của một mô hình bằng nhựa ba chiều với hình ảnh cứng polymer, nơi diện tích tiếp xúc với tia cực tím được kiểm soát bởi một mô hình lớp hay phát quang quét.[4][5] Sau đó, vào năm 1984, Chuck Hull của Công ty Cổ phần Hệ thống 3D,[6] đã phát triển một hệ thống nguyên mẫu dựa trên quá trình này được gọi là stereolithography, trong đó các lớp được bổ sung bằng cách chữa giấy nến với ánh sáng cực tím laser. Hull định nghĩa quá trình như một “hệ thống để tạo ra các đối tượng ba chiều bằng cách tạo ra một mô hình mặt cắt của các đối tượng được hình thành,”[7][8] nhưng điều này đã được đã được phát minh bởi Kodama. Đóng góp của Hull là việc thiết kế các định dạng STL (STereoLithography) tập tin được chấp nhận rộng rãi bởi các phần mềm in 3D cũng như các slicing và ấp ủ chiến lược kỹ thuật số phổ biến đến nhiều quá trình ngày hôm nay. Thuật ngữ in 3D ban đầu được gọi là quá trình sử dụng tiêu chuẩn và tùy chỉnh máy in phun đầu in. Các công nghệ được sử dụng bởi hầu hết các máy in 3D cho đến nay, đặc biệt là người nuôi cá và các mẫu được người tiêu dùng theo định hướng mô hình lắng đọng hợp nhất, một ứng dụng đặc biệt của nhựa đùn.

AM xử lý để thiêu kết kim loại hoặc tan chảy (như thiêu kết có chọn lọc tia laser, kim loại trực tiếp bằng laser thiêu kết, và chọn lọc tia laser nóng chảy) thường đi bằng tên riêng của mình trong năm 1980 và 1990. Gần như tất cả các sản kim loại tại thời điểm đó là do đúc, chế tạo, đóng dấu, và gia công; mặc dù rất nhiều tự động hóa được áp dụng cho những công nghệ (chẳng hạn như bằng robot hàn và CNC), ý tưởng về một công cụ hoặc đầu chuyển qua một phong bì công việc 3D chuyển một khối lượng của nguyên liệu thô thành một hình dạng mong muốn bằng lớp lớp được liên kết bởi hầu hết mọi người chỉ với quá trình loại bỏ kim loại (thay vì thêm nó), chẳng hạn như CNC phay, CNC EDM, và nhiều người khác. Nhưng AM-loại thiêu kết đã bắt đầu thách thức giả định đó. Vào giữa những năm 1990, các kỹ thuật mới cho vật liệu lắng đọng được phát triển tại Stanford và Đại học Carnegie Mellon, bao gồm microcasting[9] và vật liệu phun.[10] vật liệu hiến tế và hỗ trợ cũng đã trở nên phổ biến hơn, cho phép hình học đối tượng mới.[11]

Các thuật ngữ chung sản xuất phụ gia tăng tiền tệ rộng hơn trong các thập kỷ của những năm 2000[12] như các quá trình phụ khác nhau trưởng thành và nó trở nên rõ ràng rằng việc loại bỏ sớm bằng kim loại sẽ không còn là quá trình gia công kim loại chỉ được thực hiện theo đó loại điều khiển (một công cụ hoặc đầu di chuyển qua một phong bì công việc 3D chuyển một khối lượng của nguyên liệu vào một lớp hình dạng mong muốn của lớp). Đó là trong thập kỷ này mà hạn chế bớt để xuất hiện như là một retronym cho các gia đình lớn của quá trình gia công với việc cắt kim loại như là chủ đề phổ biến của họ. Tuy nhiên, vào thời điểm đó, thuật ngữ in ấn 3D vẫn chỉ gọi những công nghệ polymer trong hầu hết tâm trí, và các hạn AM là likelier để được sử dụng trong bối cảnh kim loại so với những người say mê polymer / phun / stereolithography. Thuật ngữ trừ không thay thế được các hạn công, thay vì bổ sung nó khi một thuật ngữ bao hàm bất kỳ phương pháp loại bỏ là cần thiết.

Bởi những năm 2010 đầu năm, các từ ngữ in 3D và sản xuất phụ gia phát triển các giác quan, trong đó họ là đồng nghĩa thuật ngữ bao trùm cho tất cả các công nghệ AM. Mặc dù đây là một khởi hành từ trước đó về mặt kỹ thuật các giác quan của họ hẹp hơn, nó phản ánh một thực tế đơn giản mà các công nghệ chia sẻ tất cả các chủ đề chung của lớp tuần tự các tài liệu bổ sung / tham gia trong suốt một phong bì 3D làm việc dưới sự kiểm soát tự động. (Các điều khoản khác đã xuất hiện, mà thường được sử dụng như là từ đồng nghĩa AM (dù đôi khi hypernyms), đã sản xuất máy tính để bàn, sản xuất nhanh chóng [là người thừa kế sản xuất cấp hợp lý để tạo mẫu nhanh ], và sản xuất theo yêu cầu [mà vang trên -demand in theo nghĩa 2D in ].) The 2010s là những thập kỷ đầu tiên, trong đó bộ phận kim loại như khung cơ[13] và các loại hạt lớn[14] sẽ được phát triển (trước hoặc thay vì gia công) trong sản xuất công việc chứ không phải hơn obligately được gia công từ cổ phiếu thanh hoặc tấm.

Ứng dụng

Mô hình của một tuabin thấy ích lợi của 3d in ấn trong ngành công nghiệp

Công nghệ AM thấy các ứng dụng bắt đầu từ những năm 1980 trong phát triển sản phẩm, dữ liệu trực quan, nhanh chóng tạo mẫu và sản xuất chuyên ngành. Mở rộng sang sản xuất (sản xuất công việc, sản xuất hàng loạt, và sản xuất phân phối) đã được phát triển trong những thập kỷ kể từ đó. Vai trò sản xuất công nghiệp trong kim loại công nghiệp[15] đạt được quy mô lớn lần đầu tiên trong những năm 2010 đầu năm. Kể từ đầu thế kỷ 21 đã có sự tăng trưởng lớn trong việc bán các máy AM, và giá đã giảm đáng kể.[16] Theo Wohlers Associates, một công ty, thị trường cho máy in và các dịch vụ 3D được trị giá $ 2200000000 trên toàn thế giới trong năm 2012, tăng 29% so với năm 2011.[17] Có nhiều ứng dụng cho công nghệ AM, bao gồm kiến trúc, xây dựng (AEC), thiết kế công nghiệp, ô tô, hàng không vũ trụ,[18] quân sự, kỹ thuật, công nghiệp nha khoa và y tế, công nghệ sinh học (con người thay thế mô), thời trang, giày dép, đồ trang sức, kính mắt, giáo dục, hệ thống thông tin địa lý, thực phẩm, và nhiều lĩnh vực khác.

Năm 2005, một người nuôi cá và nhà sử dụng thị trường mở rộng nhanh chóng được thành lập với việc khai trương các mã nguồn mở RepRap và Fab @ Home dự án. Hầu như tất cả các nhà sử dụng máy in 3D phát hành cập nhật có nguồn gốc kỹ thuật của họ trong các dự án trên sẽ RepRap và các sáng kiến phần mềm nguồn mở có liên quan.[19] Trong sản xuất phân tán, một nghiên cứu đã tìm thấy [ 20 ] rằng in 3D có thể trở thành một sản phẩm thị trường đại chúng cho phép người tiêu dùng để tiết kiệm tiền liên quan đến việc mua các vật dụng thông thường.[20][21] Ví dụ, thay vì đi đến một cửa hàng để mua một đối tượng thực hiện trong một nhà máy do tiêm đúc (chẳng hạn như một cốc đo hoặc phễu), một người thay thế có thể in nó ở nhà từ một mô hình 3D tải.

Nguyên tắc chung

Mô hình cắt 3D

Mô hình hóa

Bài chi tiết: Mô hình 3D

Mô hình 3D in có thể được tạo ra với một thiết kế máy tính hỗ trợ (CAD) gói hoặc thông qua một máy quét 3D hoặc thông qua một máy ảnh kỹ thuật số và đồng bằng trắc phần mềm.

Các quá trình làm mẫu của nhãn hiệu của việc chuẩn bị dữ liệu hình học cho đồ họa máy tính 3D tương tự như thuật nhựa như điêu khắc. Quét 3D là một quá trình phân tích và thu thập dữ liệu kỹ thuật số vào hình dạng và sự xuất hiện của một đối tượng thực sự. Dựa trên dữ liệu này, các mô hình ba chiều của các đối tượng quét sau đó có thể được sản xuất.

Bất kể các phần mềm mô phỏng 3D được sử dụng, các mô hình 3D (thường trong.skp,.dae,.3 ds hoặc một số định dạng khác) sau đó cần phải được chuyển đổi sang một trong hai a.STL hoặc một định dạng.obj, để cho phép việc in ấn (aka ” CAM “) phần mềm để có thể đọc nó.

In

Trước khi in một mô hình 3D từ một tập tin STL, trước tiên nó phải được kiểm tra về “lỗi đa dạng”, bước này được gọi là “fixup”. Đặc biệt là STL của đã được sản xuất từ một mô hình thu được thông qua chức năng quét 3D thường có nhiều lỗi đa dạng trong đó mà cần phải được cố định. Ví dụ về các lỗi đa dạng là các bề mặt mà không kết nối, những khoảng trống trong các mô hình,… Ví dụ về các phần mềm có thể được sử dụng để sửa chữa những sai sót này netfabb và Meshmixer, hoặc thậm chí Cura, hoặc Slic3r.[22][23]

Khi đã xong, file.STL cần phải được xử lý bởi một phần mềm được gọi là một “slicer” mà chuyển đổi các mô hình thành một loạt các lớp mỏng và tạo ra một tập tin G-code có chứa các hướng dẫn phù hợp với một loại hình cụ thể của máy in 3D (máy in FDM). Tập tin G-code này sau đó có thể được in với in ấn 3D client phần mềm (mà tải các G-code, và sử dụng nó để hướng dẫn cho máy in 3D trong quá trình in ấn 3D). Cần lưu ý ở đây là thường, các phần mềm máy khách và slicer được kết hợp thành một chương trình phần mềm trong thực tế. Một số chương trình mã nguồn mở slicer tồn tại, bao gồm cả Skeinforge, Slic3r, và Cura cũng như các chương trình mã nguồn đóng bao gồm Simplify3D và KISSlicer. Ví dụ về các khách hàng in ấn 3D bao gồm Repetier-Host, ReplicatorG, Printrun / Pronterface,….

Sọ quét của Spinosaurus được in bằng công nghệ 3D

Lưu ý rằng có một mảnh khác của phần mềm thường được sử dụng bởi những người sử dụng in ấn 3D, cụ thể là một người xem GCode. Phần mềm này cho phép kiểm tra một trong những tuyến đường đi của vòi phun máy in. Bằng cách kiểm tra này, người dùng có thể quyết định sửa đổi GCode để in các mô hình một cách khác nhau (ví dụ như ở một vị trí khác nhau, ví dụ như đứng so với nằm xuống) để tiết kiệm nhựa (tùy thuộc vào vị trí và vòi phun đi, nhiều hơn hoặc ít hơn hỗ trợ vật chất có thể cần thiết). Ví dụ người xem GCode là Gcode Viewer cho Blender và Pleasant3D.

Các máy in 3D sau các hướng dẫn G-code để nằm xuống lớp kế tiếp của chất lỏng, bột, giấy hoặc các vật liệu tấm để xây dựng các mô hình từ một loạt các mặt cắt ngang. Những lớp này, tương ứng với các mặt cắt ngang ảo từ các mô hình CAD, được tham gia hoặc tự động kết hợp để tạo ra các hình dạng cuối cùng. Ưu điểm chính của kỹ thuật này là khả năng tạo ra bất kỳ hình dạng gần như hoặc tính năng hình học.

Độ phân giải máy in mô tả lớp dày và độ phân giải XY trong chấm trên mỗi inch (dpi) hoặc micromet (micron). Độ dày lớp điển hình là khoảng 100 mm (250 DPI), mặc dù một số máy như Objet Connex loạt và Hệ thống 3D ‘ Projet series có thể in lớp mỏng như 16 mm (1.600 DPI).[24] XY độ phân giải là tương đương với máy in laser. Các hạt (chấm 3D) là khoảng 50 đến 100 mm (510-250 DPI) đường kính.

Xây dựng một mô hình với các phương pháp hiện đại có thể mất từ ​​vài giờ đến vài ngày, tùy thuộc vào phương pháp được sử dụng và kích thước và độ phức tạp của mô hình. Các hệ thống phụ gia thường có thể làm giảm thời gian này để một vài giờ, mặc dù nó thay đổi tùy rộng rãi trên các loại máy được sử dụng và kích thước và số lượng của các mô hình được sản xuất cùng một lúc.

Kỹ thuật truyền thống như ép phun có thể ít tốn kém để sản xuất các sản phẩm polyme với số lượng cao, nhưng sản xuất chất phụ gia có thể được nhanh hơn, linh hoạt hơn và ít tốn kém khi sản xuất với số lượng tương đối nhỏ của các bộ phận. Máy in 3D cung cấp cho các nhà thiết kế và đội ngũ phát triển khái niệm khả năng để sản xuất các bộ phận và các mô hình khái niệm sử dụng một máy in kích cỡ màn hình.

Hoàn thiện

Mặc dù độ phân giải máy in sản xuất là đủ cho nhiều ứng dụng, in một phiên bản hơi quá khổ của đối tượng mong muốn ở độ phân giải tiêu chuẩn và sau đó loại bỏ các tài liệu[25] với một độ phân giải cao hơn quá trình trừ có thể đạt được độ chính xác cao hơn.

Một số polyme in cho phép các bề mặt được làm nhẵn và cải thiện quá trình sử dụng hơi hóa chất.

Một số kỹ thuật sản xuất chất phụ gia có khả năng sử dụng nhiều vật liệu trong quá trình xây dựng các bộ phận. Những kỹ thuật này có thể in nhiều màu sắc và kết hợp màu sắc cùng một lúc, và sẽ không cần thiết phải sơn.

Một số kỹ thuật in ấn đòi hỏi sự hỗ trợ nội bộ được xây dựng cho nhô ra tính năng trong xây dựng. Những hỗ trợ này phải được loại bỏ một cách máy móc hoặc giải thể sau khi hoàn thành các bản in.

Tất cả các kim loại máy in 3-D thương mại liên quan đến việc cắt giảm các thành phần kim loại ra khỏi bề mặt kim loại sau khi lắng đọng. Một tiến trình mới cho các GMAW 3-D in cho phép thay đổi bề mặt chất nền để loại bỏ nhôm thành phần bằng tay với một cái búa..[26]

Quy trình

Tạo mẫu nhanh trên toàn thế giới năm 2001[27]

Các mẫu xe Audi được thực hiện và lắp ghép nhanh

Một số quy trình in 3D khác nhau đã được phát minh ra từ cuối năm 1970. Các máy in ban đầu lớn, đắt tiền, và rất hạn chế trong những gì họ có thể sản xuất.[3]

Một số lượng lớn của các quá trình phụ đang có sẵn. Sự khác biệt chính giữa các tiến trình đang trong cách lớp lắng đọng để tạo các bộ phận và trong các vật liệu được sử dụng. Một số phương pháp làm tan hoặc làm mềm nguyên liệu để sản xuất các lớp, ví dụ như chọn lọc nóng chảy bằng laser (SLM) hoặc kim loại thiêu kết trực tiếp bằng laser (DMLS), tia laser thiêu kết có chọn lọc (SLS), mô hình lắng đọng hợp nhất (FDM),[28] hoặc hợp nhất chế tạo dây tóc (FFF), trong khi những người khác chữa vật liệu lỏng sử dụng các công nghệ tinh vi khác nhau, ví dụ như stereolithography (SLA). Với nhiều lớp đối tượng sản xuất (LOM), lớp mỏng được cắt thành hình và nối lại với nhau (ví dụ như giấy, nhựa, kim loại). Mỗi phương pháp có ưu điểm và nhược điểm riêng của nó, đó là lý do tại sao một số công ty do đó cung cấp một sự lựa chọn giữa bột và polymer vật liệu sử dụng để xây dựng các đối tượng.[29] Các công ty khác đôi khi được sử dụng tiêu chuẩn, off-the-shelf giấy kinh doanh như xây dựng nguyên liệu để sản xuất một mẫu thử nghiệm độ bền cao. Các vấn đề chính trong việc lựa chọn một máy nói chung là tốc độ, chi phí của máy in 3D, chi phí của các mẫu thử nghiệm, chi phí in ấn và lựa chọn vật liệu, màu sắc và khả năng.[30]

Máy in làm việc trực tiếp với các kim loại đắt tiền. Trong một số trường hợp, tuy nhiên, máy in rẻ tiền hơn có thể được sử dụng để làm cho một khuôn, mà sau đó được sử dụng để tạo các bộ phận kim loại.[31]

Nung chảy lắng đọng

Mô hình hợp nhất lắng đọng: 1 – vòi phun ejecting nóng chảy nhựa, 2 – tài liệu lưu ký (phần mô hình hóa), 3 – kiểm soát bảng di động

Bài chi tiết: Chế tạo bằng sợi nóng chảy

Mô hình lắng đọng hợp nhất (FDM) được phát triển bởi S. Scott Crump vào cuối những năm 1980 và đã được thương mại hóa vào năm 1990 bởi Stratasys.[32] Sau khi bằng sáng chế về công nghệ này đã hết hạn, một cộng đồng phát triển mã nguồn mở được phát triển lớn và cả thương mại và DIY biến thể sử dụng loại máy in 3D xuất hiện. Kết quả là, giá của công nghệ này đã giảm hai bậc từ những sáng tạo.

Trong tụ hợp nhất mô hình hóa các mô hình hoặc một phần được sản xuất bằng cách đùn hạt nhỏ chất đó cứng lại ngay lập tức để tạo thành lớp. Một nhiệt dẻo sợi hoặc dây kim loại được quấn trên một cuộn dây được unreeled để cung cấp nguyên liệu cho một đùn đầu vòi phun. Các đầu vòi phun làm nóng vật liệu và biến dòng chảy và tắt. Thông thường stepper động cơ hoặc động cơ servo được sử dụng để di chuyển đầu phun ra và điều chỉnh dòng chảy. Người đứng đầu có thể được di chuyển theo cả hai chiều ngang và dọc, và kiểm soát của cơ chế này thường được thực hiện bởi một sản xuất máy tính hỗ trợ gói (CAM) phần mềm chạy trên một vi điều khiển.

Polyme khác nhau được sử dụng, bao gồm cả acrylonitrile butadiene styrene (ABS), polycarbonate (PC), axit polylactic (PLA), polyethylene mật độ cao (HDPE), PC / ABS, polyphenylsulfone (PPSU) và tác động cao polystyrene (HIPS). Nói chung, các polymer là trong các hình thức của một sợi chế tạo từ nhựa nguyên sinh. Có nhiều dự án trong cộng đồng mã nguồn mở nhằm xử lý hậu tiêu dùng chất thải nhựa thành sợi. Liên quan đến máy được sử dụng để cắt nhỏ và extrude các vật liệu nhựa vào sợi.

FDM được phần nào bị hạn chế trong các biến thể của hình dạng mà có thể được chế tạo. Ví dụ, FDM thường không có thể sản xuất các cấu trúc thạch nhũ giống như, vì họ sẽ không được hỗ trợ trong quá trình xây dựng. Nếu không, một hỗ trợ mỏng phải được thiết kế thành các cấu trúc có thể bị vỡ ra trong khi xử lý.

Kết dính các vật liệu dạng hạt

Các CandyFab hệ thống in dạng hạt sử dụng khí nóng và đường cát để sản xuất các vật phẩm nghệ thuật thực phẩm cấp

Polyme khác nhau được sử dụng, bao gồm cả acrylonitrile butadiene styrene (ABS), polycarbonate (PC), axit polylactic (PLA), polyethylene mật độ cao (HDPE), PC / ABS, polyphenylsulfone (PPSU) và tác động cao polystyrene (HIPS). Nói chung, các polymer là trong các hình thức của một sợi chế tạo từ nhựa nguyên sinh. Có nhiều dự án trong cộng đồng mã nguồn mở nhằm xử lý hậu tiêu dùng chất thải nhựa thành sợi. Liên quan đến máy được sử dụng để cắt nhỏ và extrude các vật liệu nhựa vào sợi.

FDM được phần nào bị hạn chế trong các biến thể của hình dạng mà có thể được chế tạo. Ví dụ, FDM thường không có thể sản xuất các cấu trúc thạch nhũ giống như, vì họ sẽ không được hỗ trợ trong quá trình xây dựng. Nếu không, một hỗ trợ mỏng phải được thiết kế thành các cấu trúc có thể bị vỡ ra trong khi xử lý.[33]

Selective Laser trình thiêu kết (SLS) đã được phát triển và cấp bằng sáng chế của tiến sĩ Carl Deckard và Tiến sĩ Joseph Beaman, Iowa tại Đại học Texas tại Austin vào giữa những năm 1980, dưới sự bảo trợ của DARPA.[34] Một quá trình tương tự đã được cấp bằng sáng chế mà không bị thương mại hóa bởi RF Housholder vào năm 1979.[35]

Chọn lọc tia laser nóng chảy (SLM) không sử dụng quá trình thiêu kết cho các phản ứng tổng hợp hạt bột nhưng sẽ hoàn toàn tan bột dùng laser năng lượng cao để tạo ra vật liệu hoàn toàn dày đặc trong một phương thức lớp khôn ngoan có tính chất cơ học tương tự như của các kim loại được sản xuất thông thường.

Chùm tia điện tử nóng chảy (EBM) là một loại tương tự của phụ gia công nghệ sản xuất cho các bộ phận kim loại (ví dụ như hợp kim titan). EBM sản xuất các bộ phận bằng kim loại nóng chảy lớp bột của lớp với một chùm tia điện tử trong chân không cao. Không giống như các kỹ thuật thiêu kết kim loại hoạt động dưới nhiệt độ nóng chảy, phần EBM là hoàn toàn dày đặc, void-miễn phí, và rất mạnh mẽ.[36][37]

Một phương pháp khác bao gồm một 3D in phun hệ thống. Các máy in tạo ra các mô hình một lớp tại một thời gian bằng cách trải một lớp bột (thạch cao, hoặc nhựa) và in một chất kết dính trong các mặt cắt ngang của phần sử dụng một quá trình in phun như thế nào. Điều này được lặp đi lặp lại cho đến khi tất cả các lớp đã được in. Công nghệ này cho phép in ấn các nguyên mẫu đầy đủ màu sắc, nhô ra, và các bộ phận đàn hồi. Sức mạnh của bản in bột ngoại quan có thể được tăng cường bằng sáp hoặc nhiệt rắn polymer ngâm tẩm.

Lamination

Bài chi tiết: Sản xuất đối tượng nhiều lớp (LOM)

Trong một số máy in, giấy có thể được sử dụng làm vật liệu xây dựng, dẫn đến chi phí thấp hơn để in. Trong những năm 1990 một số công ty trên thị trường máy in mà cắt mặt cắt ngang ra đặc biệt dính bọc giấy sử dụng một laser carbon dioxide và sau đó ép chúng lại với nhau.

Năm 2005 Mcor Technologies Ltd đã phát triển một quy trình khác nhau bằng cách sử dụng thông thường của tấm giấy văn phòng, một tungsten carbide lưỡi để cắt hình dạng, và lắng đọng có chọn lọc các chất kết dính và áp lực để liên kết các nguyên mẫu.[38]

Ngoài ra còn có một số công ty bán máy in mà in nhiều lớp đối tượng sử dụng tấm nhựa và kim loại mỏng.

Quang hóa polymer

Bộ máy Stereolithography

Bài chi tiết: In li-tô lập thể

Stereolithography được cấp bằng sáng chế vào năm 1986 bởi Chuck Hull.[39] PPhotopolymerization chủ yếu được sử dụng trong stereolithography (SLA) để sản xuất một phần rắn từ chất lỏng. Quá trình này định nghĩa lại một cách đáng kể các nỗ lực trước đó, từ “photosculpture” phương pháp của François Willème (1830-1905) vào năm 1860 thông qua các photopolymerization của Matsubara Mitsubishi năm 1974[40] Các phương pháp “photosculpture” gồm chụp một đối tượng từ một loạt các cách đều góc và chiếu mỗi bức ảnh lên một màn hình, nơi một pantagraph đã được sử dụng để theo dõi các phác thảo trên mô hình đất sét[41][42][43])

Trong ảnh trùng hợp, một thùng của polymer lỏng tiếp xúc với ánh sáng kiểm soát theo safelight điều kiện. Các polymer lỏng tiếp xúc cứng lại. Việc xây dựng các tấm sau đó di chuyển xuống trong từng bước nhỏ và các polymer lỏng là một lần nữa tiếp xúc với ánh sáng. Quá trình này lặp đi lặp lại cho đến khi các mô hình đã được xây dựng. Các polymer lỏng sau đó được lấy từ những vat, để lại các mô hình rắn. Các EnvisionTEC Perfactory[44] là một ví dụ về một hệ thống tạo mẫu nhanh DLP.

Hệ thống máy in phun như Objet PolyJet liệu hệ thống phun photopolymer lên một khay xây dựng trong lớp cực mỏng (từ 16 đến 30 mm) cho đến khi phần được hoàn thành. Mỗi lớp photopolymer được chữa khỏi với ánh sáng UV sau khi được phun nước, sản xuất mô hình chữa khỏi hoàn toàn mà có thể bị xử lý và sử dụng ngay lập tức, mà không có hậu đóng rắn. Các tài liệu hỗ trợ giống gel, được thiết kế để hỗ trợ hình học phức tạp, được lấy ra bằng tay và phun nước. Nó cũng thích hợp cho các chất đàn hồi.

Tính năng siêu nhỏ có thể được thực hiện với kỹ thuật 3D vi chế tạo sử dụng trong nhân quang photopolymerisation. Phương pháp này sử dụng tia laser tập trung để theo dõi các đối tượng 3D mong muốn thành một khối gel. Do tính chất phi tuyến của các kích thích ảnh, gel được chữa khỏi với một chất rắn chỉ ở những nơi mà các laser được tập trung trong khi gel còn lại sau đó được rửa sạch. Kích thước tính năng dưới 100 nm có thể dễ dàng sản xuất, cũng như cấu trúc phức tạp bằng cách di chuyển và các bộ phận đan cài.[45]

Tuy nhiên, cách tiếp cận khác sử dụng một loại nhựa tổng hợp được kiên cố hóa bằng cách sử dụng đèn LED.[46]

Trong Mask-image-chiếu dựa trên một mô hình kỹ thuật số stereolithography 3D được lát bởi một tập hợp các máy bay ngang. Mỗi slice đã được chuyển đổi thành một hình ảnh mặt nạ hai chiều. Các mặt nạ ảnh sau đó được chiếu lên một bề mặt nhựa lỏng photocurable và ánh sáng được chiếu lên nhựa để chữa nó trong hình dạng của các lớp.[47] Kỹ thuật này đã được sử dụng để tạo các đối tượng bao gồm nhiều vật liệu chữa bệnh ở mức độ khác nhau. Trong các hệ thống nghiên cứu, ánh sáng được chiếu từ bên dưới, cho phép các loại nhựa để được nhanh chóng lan rộng thành những lớp mỏng thống nhất, giảm thời gian sản xuất từ vài giờ đến vài phút.[47][47] Thương mại có sẵn các thiết bị như Objet Connex áp dụng nhựa thông qua vòi phun nhỏ..[47]

In 3D sinh học

Bài chi tiết: In 3D sinh học

In 3D sinh học là quá trình tạo ra cấu trúc 3D và hình học sử dụng các tế bào và một vật liệu đóng gói. Các ứng dụng y tế của In 3D sinh học rất nhiều, và do đó là chủ đề của nghiên cứu chuyên sâu tại các tổ chức học thuật như Đại học Cornell và các công ty như Organovo. Một lĩnh vực ứng dụng chính của in sinh học là trong lĩnh vực kỹ thuật mô của y học tái tạo. Ngoài những phức tạp liên quan đến in 3D nói chung, phải xem xét thêm về vật liệu, loại tế bào và lựa chọn yếu tố tăng trưởng. Do những cân nhắc thêm này, nghiên cứu in sinh học thực sự là một nỗ lực liên ngành, liên quan đến các nhà nghiên cứu từ các lĩnh vực khoa học vật liệu, sinh học tế bào, kỹ thuật các loại và y học.

In sinh học 3D đã chứng kiến ​​nhiều thành công ban đầu về mặt tạo ra một số loại mô khác nhau. Ví dụ như da, xương, sụn, khí quản và mô tim. Mặc dù thành công ban đầu đã đạt được trong các cấu trúc mô không chức năng này, nhưng nỗ lực nghiên cứu quan trọng hướng đến việc tạo ra các cơ quan và mô thay thế đầy đủ chức năng, như van tim động mạch chủ.

Các nhà nghiên cứu trong Phòng thí nghiệm Jonathan Butcher thuộc Đại học Kỹ thuật Cornell đã phát triển các phương pháp để sinh thiết van tim động mạch chủ sống. Poly (ethylene glycol) -diacrylate (PEGDA) được sử dụng làm polymer cơ bản, vì tính tương thích sinh học và tính chất cơ học dễ điều chỉnh của nó. Hai giải pháp khác nhau của PEGDA đã được tạo ra với độ cứng cơ học khác nhau khi liên kết ngang, với polymer cứng hơn được sử dụng làm thành rễ động mạch chủ và polymer tuân thủ được sử dụng làm tờ rơi van. Sử dụng các giải pháp này, một van thể hiện tính không đồng nhất cơ học và khả năng tương thích tế bào học đã được in ra, nó sẽ là cơ sở cho sự phát triển trong tương lai của quá trình in van động mạch chủ.

Phòng thí nghiệm Lawrence Bonassar tại Đại học Cornell đã nghiên cứu về hình học sụn nhân tạo 3D. Một trọng tâm của nghiên cứu của họ liên quan đến việc thay thế các đĩa xen kẽ bằng các cấu trúc Tissue Engineered-Total Disk thay thế. Các đĩa xen kẽ mô được thiết kế sinh học với các cấu trúc hydrogel có hạt và được cấy vào chuột đực.

Về mặt thương mại, Printerinks, một công ty của Anh và Organovo, một công ty của Hoa Kỳ, đã làm việc cùng nhau để phát triển mô người thông qua in 3D. Hộp mực máy in được điều chỉnh để sử dụng tế bào gốc thu được từ sinh thiết và được nuôi cấy trong môi trường nuôi cấy. Chất kết quả được gọi là Bioink.

In nano 3D

Kỹ thuật in 3D có thể được sử dụng để xây dựng các đối tượng có kích thước nano có kích thước. Đối tượng in này thường được trồng trên một bề mặt rắn, ví dụ như wafer silicon, mà họ tuân thủ sau khi in, vì chúng quá nhỏ và yếu ớt không được thao tác sau thi công. Trong khi cấu trúc nano 2D thường được tạo bằng cách đặt các tài liệu thông qua một số loại mặt nạ stencil tĩnh, các cấu trúc nano 3D có thể được in bằng chất di chuyển một mặt nạ stencil trong quá trình lắng đọng vật liệu. Lập trình cấu trúc nano-chiều cao với chiều rộng nhỏ tới 10 nm đã được sản xuất bằng kim loại lắng đọng hơi vật lý thông qua một thiết bị truyền động điều khiển Piezo-stencil mặt nạ có một nanopore trà trộn vào một màng silicon nitride. Kỹ thuật kim loại hơi này cũng là thuận lợi bởi vì nó có thể được sử dụng trên các bề mặt là quá nhạy cảm với nhiệt hoặc hóa chất cho in thạch bản truyền thống được sử dụng trên

 

 

 

 

 

 

Tag: nghệ in gì lắp ghép rẻ việt nam panel touch scanning sơn ô tô lớp butterfly teen nữ bách lăn sách giáo dục giống gen điểm tiếng tiểu nhờ quỹ quốc mạng tnhh quay cóp tt22 hải tomec soạn tiện anivia du lịch ultherapy rác cục sát pha lê cad/cam sbr